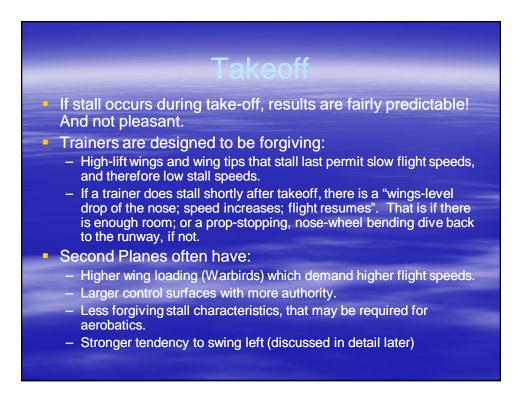


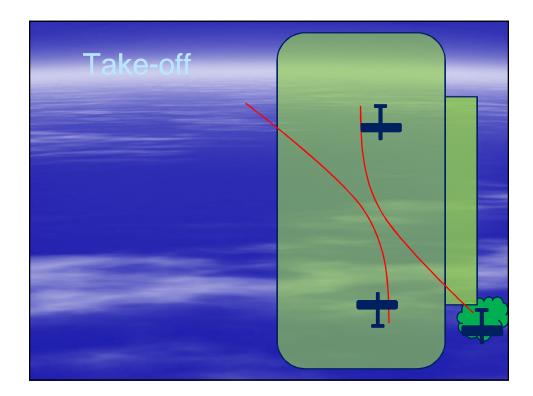
Stall (cont.)

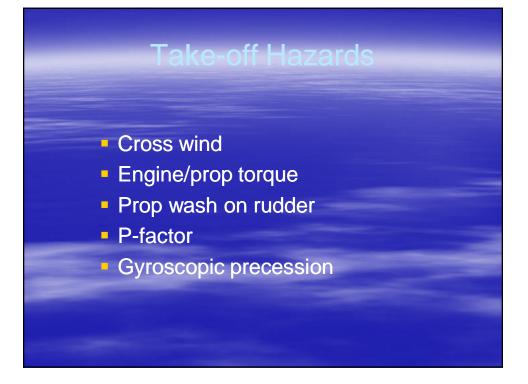
 Normally, up elevator causes nose to pitch up <u>and</u> direction to change.

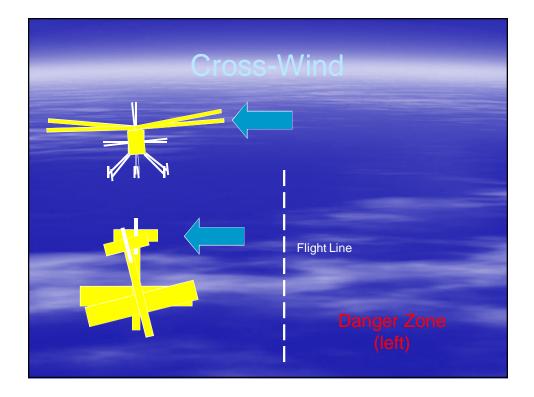


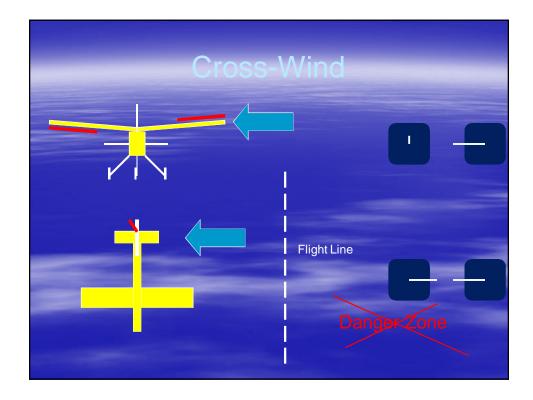
Wing Wash-out

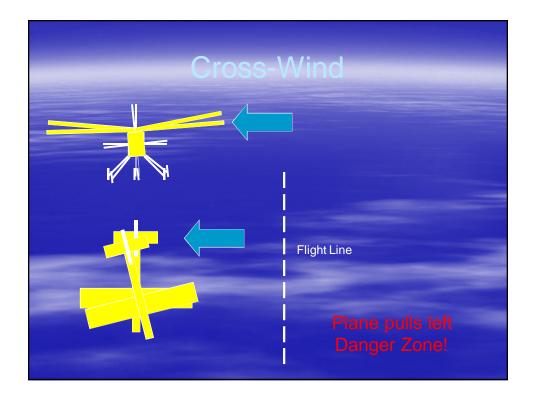

What is it?

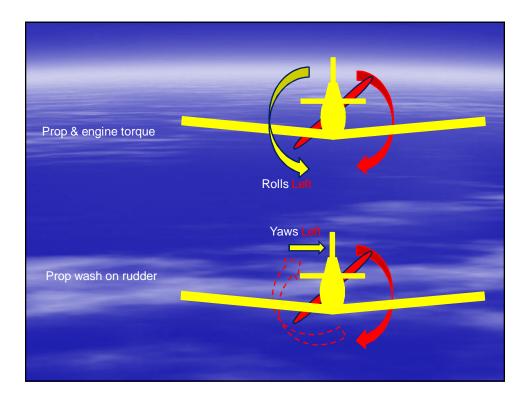

 The wings have a slight twist from root to tips, so that the tips are aimed slightly down. As angle of incidence increases, the root stalls before the tips. Aileron control is maintained.

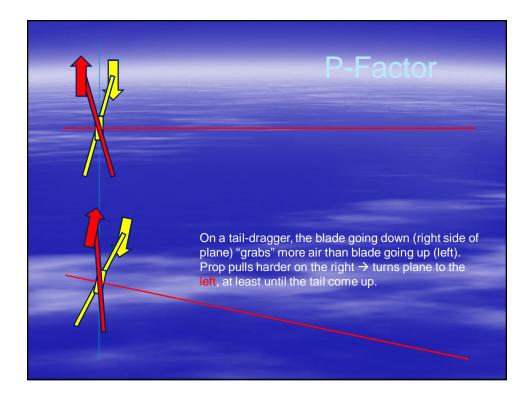

Stall/Spin Recovery

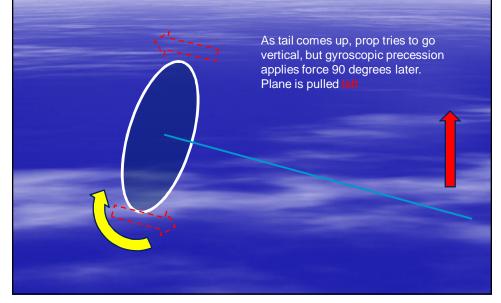

- Neutralize sticks first
- Add some throttle (about ½ throttle)
- Aim nose down (if altitude allows)
 - Throttle and descent will get air flowing over the wings and control surfaces.
- If required, add rudder in opposite direction to spin
- Fly out of the descent WITHOUT excess elevator!











Gyroscopic Precession

Take-off Hazards

- With a South Wind → 5 factors pull left!!!
 - Cross wind
 - Engine torque
 - Prop wash on rudder
 - P-factor
 - Gyroscopic precession

COMPENSATE

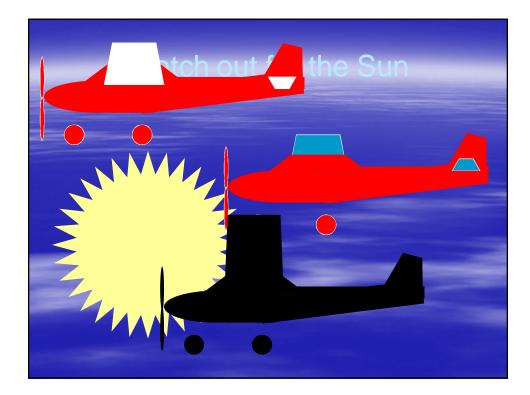
- Set up slightly right
- Apply right rudder
- Steer with the rudder
- Get more speed before lift-off

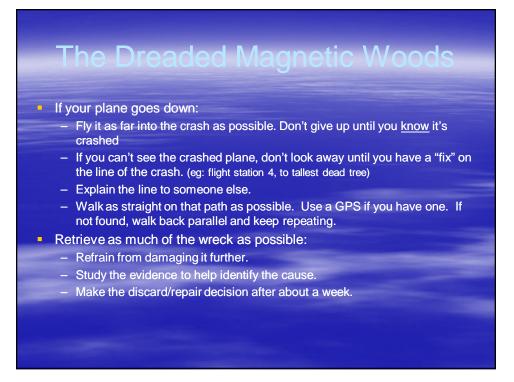
Second Plane - Re-take the scene:

- A second plane is often the pilot's first tail-dragger. Practice taxiing at various speeds using the rudder.
- Usually requires up elevator during taxiing to avoid nosing over. Practice gradually releasing elevator as speed builds up.
- On take-off as the plane veers to left during acceleration Hold direction with <u>rudder</u>. (visualize this before throttle-up)
- Accelerate longer, letting the tail come up. (remember: release elevator!)
- When the mains bounce give a touch of elevator. Don't climb for the clouds!
- With the plane flying well above stall speed -Aileron control will be easier to "feel", but keep stick movement moderate. Begin to bank away from flight line.

Aircraft C

Easy		Difficult
5 oz/sq ft	Wing Loading	35 oz/sq ft
Long tail	Fus' Length : Wing Span	Short-coupled
Constant chord	Wingtaper	Highly tapered
Wash-out	WingTwist	None
Dihedral	Wing angle	Flat or Anhedral
High wing	Wingposition	Low wing
At or ahead of wing LE.	Tail dragger wheels	Back towards CG
Close to level	Parked angle	Nose high
Wide	Undercarriage width	Narrow
<u>Slightly</u> Nose-heavy	CG	Nose-heavy or Tail-heavy


These are very general considerations, some of which can be compensated for in design.


Prop' Considerations

- Props are specified as Diameter x Pitch.
 example: 11x6 has 11 inch diameter & 6 inch pitch.
 Pitch is the theoretical forward movement during one revolution.
- Prop Diameter to pitch ratio of about 2:1 is typical for sport flying/ (11x6 for a .46 engine)
- Use lower ratio approaching 1:1 for speed (9x8)
- Use higher ratio nearer to 3:1 for low-speed pulling power (12x4)

 To keep rpm roughly the same, an increase of 1 inch in diameter, must be offset by a decrease of 1 inch in pitch; and vice versa. 10x7=11x6=12x5. (This is a rough rule-of-thumb for most sport plane prop sizes)

			PRO	DPE	ELL	.EF	R D	IAI	/E	TEF	र , 1	ΓIΡ	SP	ΈE	D,	RPI	A N	ND	NO	SE				
	Tin	Speed																						
Prop	mph	mph	Prop						_			RPN	1	(x10	00)									
Diam	400	380	Diam	5	6	7	8	9	10	11	12	13		15	/	17	18	19	20	21	22	23	24	2
	R	RPM		_		<u> </u>								Speed										
5.5	24446	23224	5.5	82	98	115	131	147	164	180	196	213	229	245	262	278	295	311	327	344	360	376	393	40
6	22409	21289	6	89	107	125	143	161	178	196	214	232	250	268	286	303	321	339	357	375	393	411	428	- 44
7	19208	18247	7	104	125	146	167	187	208	229	250	271	292	312	333	354	375	396	416	437	458	479	500	52
8	16807	15966	8	119	143	167	190	214	238	262	286	309	333	357	381	405	428	452	476	500	524	547	571	59
9	14939	14192	9	134	161								375	402	428	455	482	509	535	562	589	616	643	66
10	13445	12773	10	149		208						387	416	446	476	506	535	565	595	625	654	684	714	-74
11	12223	11612	11	164		229					393	425	458	491	524	556	589	622	654	687	720	753	785	818
12	11205	10644	12	178		250				393	428	464	500	535	571	607	643	678	714	750	785	821	857	892
13	10343	9825	13	193		271			387	425	464	503	541	580	619	657	696	735	773	812	851	890	928	96
14	9604	9124	14	208		292			416	458	500	541	583	625	666	708	750	791	833	875	916	958	1000	104
15	8964	8515	15	223		312		402	446	491	535	580	625	669	714	759	803	848	892	937	982	1026	1071	1110
16	8403	7983	16	238		333	381	428	476	524	571	619	666	714	762	809	857	904	952	1000	1047	1095	1142	1190
17	7909	7514	17	253		354	405	455	506	556	607	657	708	759	809	860	910	961	1011	1062	1113	1163	1214	1264
18	7470	7096	18	268		375	428	482	535	589	643	696	750	803	857	910	964	1017	1071	1125	1178	1232	1285	1339
19	7077	6723	19	283	339	396	452	509	565	622	678	735	791	848	904	961	1017	1074	1130	1187	1244	1300	1357	141.
20	6723	6387	20	297	357	416	476	535	595	654	714	773	833	892	952	1011	1071	1130	1190	1249	1309	1368	1428	148
	Target s																							

What we Covered:

- Recap of 4 forces
- 2 Ways to look at lift
- Aircraft Balance
- Stall
- Trainer to 2nd plane transition
- Takeoff
- Aircraft design considerations
- Propellers
- The low sun
- Improve crash recovery chances

Some Things to Try:

- On any plane with dihedral, at a safe altitude, fly with rudder and elevator only (no ailerons). See if you can do 3 laps. How about 3 horizontal eights?
- At a safe altitude, slow down and gradually add elevator until plane stalls. Does nose drop; or a wing drop? (to recover, neutralize both sticks <u>then</u> add throttle (about ½).
- Always do this (stall) on one of the first flights of a new plane. Better to find out high than on dead-stick landing!
 At a safe altitude, ¾ throttle, give sudden full up elevator. Does the plane do tight loops or stall/snap? (same recovery)
- On a familiar plane, practice using rudder during take-off
- On a familiar plane, practice gentle climb-out from take-off.

